《平行四边形的面积》教案

时间:2025-12-10 00:12:10
【实用】《平行四边形的面积》教案

【实用】《平行四边形的面积》教案

作为一名教职工,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。那么应当如何写教案呢?下面是小编为大家整理的《平行四边形的面积》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《平行四边形的面积》教案1

1.平行四边形面积的计算。

编排意图

教材分三个步骤安排。

(1)引入。从主题图中学校大门前的两个花坛(一个长方形,一个平行四边形)引入一个实际问题:两个花坛哪一个大?也就是要计算它们的面积各有多大。长方形的面积学生已经会计算,从而提出如何计算平行四边形面积的问题。

(2)用数方格的方法计算面积。这是一种直观的计量面积的方法,在学习长方形和正方形面积计算时学生已经使用过,但是像平行四边形这样两边不成直角的图形该如何数?对学生讲是一个新问题。教材给出提示,不满一格的都按半格计算。教材安排同时数一个长方形和一个平行四边形的面积,再对它们的底(长)、高(宽)和面积进行比较,暗示这两个图形之间的联系,为学生进一步探寻平行四边形面积的计算方法做准备。

(3)探究平行四边形面积计算公式。提出“不数方格能不能计算平行四边形的面积呢?”通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

最后把面积计算公式用字母表示。

教学建议

(1)结合引入环节进行长方形面积计算和平行四边形概念的复习。

(2)数方格和填表环节要让学生独立完成,然后让学生交流一下是怎样数的和数的结果。有的学生可能用把斜边上的不满一格的两个格拼成一个方格的方法,也应给以肯定。要组织学生对填表的结果进行讨论,学生比较容易发现两个图形的底与长、高与宽和面积分别相等。教师可以进一步提问:根据你的发现你能想到什么?培养学生联想、猜测的能力,同时为下一步的探究提供思路。

(3)探究平行四边形的面积公式是本课的重点。可以用提出假设——动手实验——推导——概括的步骤开展探究活动。

第一步根据上面的讨论提出假设:是否可以把平行四边形变成一个长方形来计算出它的面积?

第二步组织学生动手实验,要求每个学生准备一个平行四边形和一把剪刀。教师注意巡视和进行个别指导。学生一般会出现以下两种割补的方法,都应给以肯定。

第三步小组讨论:观察拼出的长方形和原来的平行四边形你发现了什么?这是本课教学的关键,也是学生学习的`难点。有些学生可能不知怎样去思考。可以出示一些问题引导学生思考。

①拼出的长方形和原来的平行四边形比,面积变了没有?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

③你能根据长方形面积的计算公式推导出平行四边形的面积计算公式吗?

第四步进行全班交流,要求学生叙述出自己的推导过程。

在此基础上利用多媒体课件或教具进行演示(如第81页的图),注意在演示过程中显示平移的方法。边演示边推导:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。

这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

2.平行四边形面积计算公式的应用。

可以先让学生试做,再通过集体订正检查掌握情况。

3. 关于练习十五一些习题的说明和教学建议。

第1、4题是应用问题,第1题直接应用公式计算。第4题要进行面积单位的化聚和除法计算。可在分析讨论题意的基础上让学生独立完成,再交流做法和结果,强调注意面积单位的变化。

第2题要求学生自己想办法求出平行四边形的面积,有一定的探索性。学生需要先画出平行四边形一边上的高,再量出底和高的长度,最后应用公式进行计算。

可以让学生先讨论再计算,也可让学生先独立做,再交流方法和结果。注意引导学生知道可以以不同的边作底来求出面积。

第3题是逆用公式的题目,已知平行四边形的面积和底,求高。引导学生依据乘除法的互逆关系学会灵活运用公式或列方程解答。

第5题认识等底等高的平行四边形的面积相等。先不要学生计算,引导学生讨论它们的面积相等吗?并说明理由(两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等)。

第6题与第5题的道理相同,正方形与平行四边形等底等高,所以它们的面积相等。已知正方形的周长,可以求出正方形的边长,再求出正方形的面积,也就是平行四边形的面积。可以让学生先讨论,再解答。

第7题借助课本上的示意图或做实物教具进行演示,让学生观察,讨论什么不变,什么发生了变化(四条边的长度不变,底边上的高发生变化)。从而得到它们的周长不变,但面积变了。还可以进一步讨论,面积怎样变化?什么情况下面积最大?

第8题是选作题。根据A、B是大平行四边形上下两边的中点,可以证明阴影部分也是一个平行四边形。鉴于学生还没有这方面的知识,题中直接说明它是一个平行四边形。要求出小平行四边形的面积,必须知道它的底和高的长度,题中没有给出。但从A、B是大平行四边形上下两边的中点,可以推出小平行四边形的底是大平行四边形底长的一半,它们的高相等,所以小平行四边形的面积是大平行四边形面积的一半,即48÷2=24(cm2)

《平行四边形的面积》教案2

教学目标:

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

教学重点:

1、掌握平行四边形的面积计算公式。

2、会计算平行四边形的面积。

教学难点:理解平行四边形面积公式的推导过程.

教具准备:课件,平行四边形的纸片。

学具准备:学习卡,每个学生准备一个平行四边形。

教学过程:

一、导入

1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。

2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

板书课题:平行四边形的面积

二、平行四边形面积计算

1.用数方格的方法计算面积。

(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个 ……此处隐藏30996个字……页方格图及平行四边形图。

引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算,问这个平行四边形的面积是多少平方米?

学生数完以后会得出:这个平行四边形的面积是24m2。

继续出示教材第87页的长方形图,让学生数一数并算一算长方形的面积是多少。

学生数完得出:长方形的长为6m,宽为4m,面积是24m2。

引导学生完成教材87页的表格,并对填表的结果进行讨论:你发现了什么?

通过比较、讨论,得出:两个图形的底与长,高与宽和面积分别相等。

2.猜想验证。

提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)

引导学生小结并质疑:计算平行四边形的面积用数格子的'方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?

引导假设:是否可以把平行四边形变成一个长方形来计算出它的面积?

操作验证:演示教材第88页平行四边形面积的推导过程,并让学生拿出自己的学具平行四边形纸片,像刚才演示的操作一样,同桌相互合作,动手进行剪、拼、移的操作方法,从中再次验证一下是否正确。

师巡回指导学生的操作。

引导学生思考:通过刚才的操作演示你发现了什么?

学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。

引导学生利用长方形的面积公式推导出平行四边形的面积公式:

平行四边形的面积=底×高

追问:要求平行四边形的面积必须知道什么条件?

学生得出结论:必须知道平行四边形的底和对应的高。

3.全班交流,要求学生说出自己的推导过程。(我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。)

4.教学用字母表示。

如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成:S=ah(板书)

5.应用面积计算公式计算平行四边形的面积。

出示教材第88页例1。

学生读题,理解题意,并独立完成;教师板书。

三、巩固拓展

完成教材第89页“练习十九”第2题。可先让学生试着做,再通过集体订正检查掌握情况。

四、课堂小结

师:这节课你学会了什么,有哪些收获?引导总结:把平行四边形转化成长方形可以推导出平行四边形的面积公式:平行四边形的面积=底×高

五、作业:教材第89页练习十九第1、3题。

【板书设计】:

平行四边形的面积

长方形的面积=长×宽例1 S =ah

↓ ↓ ↓ =6×4

平行四边的面积=底×高=24(m2)

↓ ↓ ↓

S=a × h

《平行四边形的面积》教案15

教学目标

1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3.对学生进行辩诈唯物主义观点的启蒙教育.

教学重点

理解公式并正确计算平行四边形的面积.

教学难点

理解平行四边形面积公式的推导过程.

教学过程

复习引入

(一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高).

(二)观察老师出示的几个平行四边形,指出它的底和高.

(三)教师出示一个长方形和一个平行四边形.

1.猜测:哪一个图形面积比较大?大多少平方厘米呢?

2.要想我们准确的答案,就要用到今天所学的知识——“平行四边形面积的计算”

板书课题:平行四边形面积的计算

二、指导探究

(一)数方格方法

1.小组合作讨论:

(1)图上标的厘米表示什么?每个小方格表示1平方厘米为什么?

(2)长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?

(3)用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)

(4)比较平行四边形的`底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?

2.集体订正

3.请同学评价一下用数方格的方法求平行四边形的面积.

学生:麻烦,有局限性.

(二)探索平行四边形面积的计算公式.

1.教师谈话

不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看.

2.学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.

3.学生到前面演示转化的方法.

4.演示课件:平行四边形的面积

5.组织学生讨论:

(1)平行四边形和转化后的长方形有什么关系?

(2)怎样计算平行四边形的面积?为什么?

(3)如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的字母公式是什么?

(三)应用

例1.一块平行四边形钢板,它的面积是多少?(得数保留整数)

4.8×3.5≈17(平方米)

答:它的面积约是17平方米.

三、质疑小结

今天你学到了哪些知识?怎样计算平行四边形面积?

四、巩固练习

(一)列式并计算面积

1.底=8厘米,高=5厘米,

2.底=10米,高=4米,

3.底=20分米,高=7分米

(二)说出下面每个平行四边形的底和高,计算它们的面积.

(三)应用题

有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)

(四)量出你手里平行四边形学具的底和高,并计算出它的面积.

教案点评:

该教学设计在学习面积的计算过程中,引导学生进行大胆猜想,提出假设,放手让学生去实践,把学生推到了课堂教学活动的主体地位,用科学的方法去验证假设,使学生学到了解决问题的方法,同时培养了学生的逻辑思维和动手操作的能力。

《【实用】《平行四边形的面积》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式