平行四边形教案优秀

时间:2025-10-19 13:06:15
平行四边形教案优秀

平行四边形教案优秀

作为一名教师,通常会被要求编写教案,借助教案可以有效提升自己的教学能力。我们应该怎么写教案呢?以下是小编精心整理的平行四边形教案优秀,仅供参考,希望能够帮助到大家。

平行四边形教案优秀1

  4.2.(一)

教材分析:

本节课是紧接《平行四边形的性质》一节,其探究的主要内容是“两条对角线互相平分的四边形是平行四边形”,以及“一组对边平行且相等的四边形是平行四边形”这两种判别方法。它是在学生掌握了平行线、三角形全等及简单图形的平移和旋转、平行四边形的定义、性质等基础性知识上学习的。在教学内容上起着承上启下的作用。首先,在探索方式上运用了学习机“图形计算器”的度量、旋转、平移等方法、其次、在探究判别条件的合理性上和运用判别条件时除用到了全等三角形的相关知识,还可以通过直观体验的方法来获取信息。其次,平行四边形的判别条件是研究特殊的平行四边形的基础;再有,平行四边形判别条件的探究模式从方法上为)(研究特殊的平行四边形奠定了基础。并且,本节内容还是学生运用化归思想的良好素材。教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、利用学习机“图形计算器”探索、总结归纳,升华得出平行四边形的判别方法,再用这些方法去对四边形是否是平行四边形进行判别。这样的安排使抽象的推理让学生更易于接受,并能在整个教学过程中真正享受到探索的乐趣。

教学目标:

1.经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法。

探索并掌握平行四边形的两种判别条件,能根据判别方法进行相关的应用。

2.在探索过程中发展学生的合理推理意识、主动探究的习惯。

体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

3.在操作学习机的“图形计算器”活动过程中,加深师生的情感。培养学生的观察能力,并提高学生的学习兴趣。在学习过程中,来体会平行四边形的图形美和内在美。同时使“图形计算器”真正成为学生的学具。

教学重点:探索并掌握平行四边形的判别条件。(一组对边平行且相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形)。

教学难点:经历平行四边形判别条件的探索过程,发展学生的合情推理意识、主动探索的习惯,逐步掌握说理的基本方法。

教学媒体设计:

为了实现教学目标、优化教学过程、突破教学难点、充分调动学生的各种感官、吸引注意力,课堂上主要采用诺亚舟学习机的“图形计算器”进行辅助教学,通过大屏幕媒体展示教学和学生对“图形计算器”充分利用,使教学过程与知识发展过程和思维过程三者同步,分别在创设情境;观察、探索;理顺、归纳;运用、提高;回顾、反思;布置作业环节都将发挥“图形计算器”的实战功能、让学生真正做到课上听懂、理解透彻。将学生的课堂练习成果进行快速展示,从而节约时间,提高课堂效率。

教学过程设计:(t—教师,s—学生)

问题与情境师生行为设计意图

活动板块1

前面我们已经学习了平行四边形概念和性质,我们来复习:

(1)平行四边形概念。

(2)平行四边形性质。

(3)如果我们自己作平行四边形,你是如何说明理由的?

进而得出需进行平行四边形判别条件的探究。

先由学生根据自主做图的基础上,进行猜想,具备什么条件的`四边形是平行四边形,将猜想记录到练习本上。利用学习机的“图形计算器”将你的猜想进行验证。

活动板块2

在学生合作探究基础上,对小组活动及时评价、引导。

同时观察是否有小组已经经过猜想、通过实验验证的方法获得了平行四边形判别条件。

适时地将学生的探究方向指引到通过平行四边形的性质来反向探究平行四边形判别条件,进而得出平行四边形判别方法。

适时地选出一小组成员在台前利用教师学习机的“图形计算器”通过大屏幕演示小组成果…

得出平行四边形判别方法:两条对角线互相平分的四边形是平行四边形或(一组对边平行且相等的四边形是平行四边形)。

活动板块3

学生继续活动,探究平行四边形判别的其他方法。

适时地将学生的探究方向指引到通过平行四边形的性质来反向探究平行四边形判别条件,进而得出平行四边形判别方法。

适时地选出一小组成员在台前利用教师学习机的“图形计算器”通过大屏幕演示小组成果…

得出平行四边形判别方法:两条对角线互相平分的四边形是平行四边形或(一组对边平行且相等的四边形是平行四边形)。

活动板块4

通过小结后,借助大屏幕展示学习机的“图形计算器”中预先保存的练习题。

活动板块5

小结及学生谈感受、体会、特别是对学习机的使用情况谈体会和认识。

活动板块6

课后思考题:(将问题的探究记录在学习机的“图形计算器”中保存)

1.平行四边形abcd中,在对角线所在直线上取ae、cf,使ae=cf,连接be、df,试说明:be=df。

2.利用学习机的“图形计算器”制作一组以平行四边形为基本图案的美丽图形。

t:提出复习概念和性质。

s:思考,回答结合一起

复习。

s:思考、作图、自主参与交流。

t:引导、合作,对小组活动及时评价。

t:注意s猜想、验证过程中出现哪些问题,他们想如何解决所遇到的问题。

t:引导发展s的探究意识和合作中团结解决所遇到的各种问题。

t:引导和补充。关注学生是否交流方法,互动学习。能否发现问题,研究并解决问题

s:互动学习,提出论证方法。

t:引导、合作,对回答问题及时评价。

s:通过对学具学习机的“图形计算器”的自主探求,获得平行四边形判别方法。

s:小组成员合作,其他学生观察、思考得出探究的正确方向。

s:互动学习,提出论证方法。

t:引导、合作,对回答问题及时评价。

t:关注学生是否交流方法,互动学习。能否发现问题,研究并解决问题

s:小组成员合作,其他学生观察、思考得出探究的正确方向。

t:根据授课情况,板演解题过程,或学生口述解题过程。s:板演或口述。

t:演示引例,解决具体问题中感受应用的价值。

s:畅所欲言

t:进行补充,总结。

s:小组一名同学记录问题题干,另一名同学在学习机的“图形计算器”上记录下图形。课后将问题的探究 ……此处隐藏12351个字……结,梳理提高

以争论面积大小的故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形

(一)提出猜想

【提问】平行四边形的面积可能等于什么?

受长方形面积公式的迁移学生可能会出现两种答案:①底×高 ②底×斜边(学生争论)

(二)动手验证

(课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。

1.多数学生会选用数格法,得到两个图形面积相等。

【追问】如果让你测量花坛的面积,你也用数格法吗?

【询问】我们能不能把平行四边形转化成我们熟悉的图形,再计算它的面积呢?

再次验证,并提出活动要求

(1) 你把平行四边形转化成什么图形?

(2) 什么变了,什么没变?

(3) 平行四边形的面积怎么算?

2.交流反馈(一个演示,一个讲解)

【提问】看懂这种方法吗?有谁的和他不同?

(三)动眼观察

【提问】这两种方法有什么共同之处?

学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。

【追问】什么变了,什么没变?

学生发现,形状变了,面积没有变。因为平行四边形的底就相当于长方形的长,平行四边形的高就相当于长方形的宽,根据长方形的`面积等于长乘宽,所以得到平行四边形的面积等于底乘高。

(小组内、同桌间说一说变化的过程,加深对公式的理解)

(四)自学课本

引导学生自学课本,用字母表示公式。

S=ah(用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高)

【追问】要求平行四边形的面积,必须知道什么?

(一)基本技能训练

(1) 计算平行四边形的面积

(2) 蓝色线这条高的长度

(二)解决实际问题

快乐公园由三个高都是16m的平行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)

(三)提升思维能力

1.在方格纸上画一个面积是24平方厘米的平行四边形

2.如果这个平行四边形的底是4厘米,那么能画出几种?

这节课你学习了什么,有哪些收获?

教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。

感受数格法不受用,从而激发起探究欲望。

本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历平行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。

打破学生思维定势,感受高和底的对应。

发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。

通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。

平行四边形教案优秀10

一、复习提问

叙述平行四边形、矩形、菱形的定义和它们的特殊性质、

几种特殊四边形的定义及性质

定义、边、角、对角线、对称性

平行四边形

矩形

菱形

二、新课讲解

设问:矩形和菱形都是特殊的平行四边形,那么更加特殊的平行四边形是什么图形?它又有什么特殊性质呢?这一堂课就来学习这种特殊的图形——正方形(写出课题)

(多媒体演示)

1、矩形怎样变化后就成了正方形呢?

2、菱形怎样变化后就成了正方形呢?

【问题】什么样的平行四边形是正方形?

正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:

(1)有一个角是直角的平行四边形(矩形)

(2)有一组邻边相等的平行四边形(菱形)

【问题】正方形有什么性质?

由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形,所以,正方形具有矩形的性质,同时又具有菱形的性质。

归纳、总结正方形的性质:

因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的'综合,引导学生从角、边、对角线、对称性上归纳总结。

正方形性质定理1:正方形的四个角都是直角,四条边都相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

正方形、菱形、矩形、平行四边形四者之间有什么关系?

例:(教材P100例4)求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。

已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图)

求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形

证明:∵四边形ABCD是正方形

∴AC=BD,AC⊥BD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)

∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO≌△BCO≌△CDO≌△DAO

拓展讨论:正方形对角线把正方形分成多少个等腰直角三角形?(结论:分成八个等腰直角三角形,分别是△ABC、△ADC、△ABD、△BCD;△AOB、△BOC、△COD、△DOA。)

三、课堂练习

P101练习1、2

补充练习

1、已知正方形的一条边长为2,求这个正方形的周长,对角线长和正方形的面积

2、如图,正方形的边长为4cm,则图中阴影部分的面积为cm2

3、如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上。

(1)求证AE=BF;

(2)若BC=cm,求正方形DEFG的边长。

四、课堂小结

1、正方形定义:有一组邻边相等并且有一个角是直角的平行四边形是正方形

2、正方形有哪些性质:对称性

五、课外作业

习题19.2第8、15题配套练习

六、板书设计

1、正方形定义:有一组邻边相等并且有一个角是直角的平行四边形是正方形

2、正方形有哪些性质:对称性

七、教学效果

本节课通过多媒体演示学生很快的从矩形、菱形添加一个条件得到一个正方形,然后又从边、角、线探究出正方形的性质,学生接受效果良好。

《平行四边形教案优秀.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式