
因数和倍数教学反思
作为一名优秀的人民教师,我们要在课堂教学中快速成长,通过教学反思可以快速积累我们的教学经验,写教学反思需要注意哪些格式呢?以下是小编为大家整理的因数和倍数教学反思,仅供参考,希望能够帮助到大家。
因数和倍数教学反思1《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不一样。本节课又是这一单元的的教学重点。为让学生很好的感受因数与倍数的意义,能够熟练的找出一个数的因数与倍数,灵活地处理了教材,分为两课时进行。第一课时只让学生认识了因数和倍数的意义及找一个数的因数的方法,效果不错。
一、设计情境,引起思考。
改变教材的情境图,用学生有兴趣的情意引入课题:有12个小方块,要求摆成一个长方体,你想怎样摆。引起学生思考,学生想到有3种摆法,每种摆法怎样列式求出一共有多少方块?由于方法的多样性,为不一样思维的'展现供给了空间。从而理解决因数与倍数的意义。
二、引导学生探求找因数的方法,使探索有方向。
如何找一个数的因数是这节课的重点,首先放手让学生找出24的因数,由于个人经验和思维的差异,出现了不一样的方法与答案,在探索这些方法和答案的过程中,学生明白了如何求出一个数的因数的方法,从而掌握了知识点。
根据学生的学习特点,灵活的应用教材,使之服务于教学,让教学有效的进行,才能到达教学的目的。
因数和倍数教学反思2听了陶老师执教的《倍数和因数》一课,我有以下几点体会。
1、倍数和因数是一个比较抽象的知识。在教学中,陶老师让学生摆出图形,通过乘法算式来认识倍数和因数。用12个同样大的正方形拼一个长方形,观察长方形的摆法,再用乘法算式表示出来,组织交流出现积是12的不同的乘法算式。即:4×3=122×6=121×12=12。根据乘法算式,从学生已有知识出发,学习倍数和因数,初步体会其意义。在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,陶老师还设计了让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,让学生明白除法算式中也能找出倍数和因数。最后,陶老师出示了五个数,让学生从中找找,说说谁是谁的倍数,谁是谁的因数。这一设计既是对上面内容的提升,又引出了下面的内容。
2、一个数的因数和倍数的寻找,课本上是安排先教学倍数后教学因数的。陶老师在教学时,打破了教材的安排,首先教学找一个数的`因数。我觉得这样做比较好,找因数的方法比较难一点点,它需要学生的逆向思维,所以陶老师一步一步的引导着学生,扶放结合地让学生去探索找一个数因数的方法,随后再去教学找一个数的倍数,学生就容易找准了。这样安排既承接了上面的内容,又为学生一个数的倍数提供了方法。
因数和倍数教学反思3本节课的资料涉及的概念十分多,即抽象又容易混淆,如何使学生更加容易理解这些概念,理清概念之间的相互联系,构建知识之间的网络体系是本节课教学的重难点,同时学会整理知识的方法更是本节课教学的灵魂。
成功之处:
1、构建知识网络体系,理清知识之间的相互联系。在教学中,我首先经过一个联想接龙的游戏调动学生学习的兴趣,让学生利用因数和倍数单元的知识来描述数字2,学生十分容易想到2是最小的质数、2是偶数、2的因数是1和2、2的倍数有2,4,6…、2的倍数特征是个位是0、2、4、6、8的数,经过学生的回答教师及时抓住其中的关键词引出本单元的`所有概念:因数、倍数、质数、合数、奇数、偶数、公因数、最大公因数、公倍数、最小公倍数、2的倍数特征、3的倍数特征、5的倍数的特征。如何整理使这些凌乱的概念变得更加简洁、更加有序、更加能体现知识之间的联系呢?经过学生课前的整理发挥小组的合作交流作用,在相互交流中,学生相互学习、相互借鉴,逐渐对这些概念的联系有了更进一步的认识,然后经过选取几名同学的作品进行展评,最终教师和学生共同进行整理和调整,最终来完善知识之间的网络体系。
2、教给学生整理知识的方法。在教学中,是授人以鱼不如授人以渔,作为教师莫过于教给学生必备的学习方法。在这节课的整理复习中,课前我让学生把第二单元的关于因数和倍数的概念进行了汇总,涉及的概念有如下几个:因数、倍数、公因数、公倍数、最大公因数、最小公倍数、质数、合数、奇数、偶数、2的倍数特征、3的倍数特征、5的倍数特征,并提出具体的要求:一是观察分析这些概念,哪些概念之间有着密切的联系;二是根据这些概念之间的紧密联系能够分为几类;三是用你自我喜欢的方法表示出来,能够以数学手抄报的形式来呈现。经过课前的设计,我事先搜集了一些有代表性的作品放在课件中,让同学们进行欣赏,相互取长补短,共同学习,共同提高。课堂中在小组讨论交流的过程后,教师与学生共同对本单元的概念进行了整理和总结,并得出知识网络图。
纵观本节课的设计,就是经过学生的联想,回忆前面学过的知识,并在头脑中构建知识之间的相互联系,从而揭示出这个知识网络图就是思维导图。掌握了这种方法,就能够把数学中的每一个单元进行整理,也能够把每一册知识进行整理,还能够把小学数学的知识进行系统的整理,从而让学生体会到思维导图方法的强大之处,学生在感叹这种方法的魅力同时,并把这种方法推广到其它学科,让学生真正掌握知识整理的方法,并在以后的单元知识整理中加以运用。
3、在练习中进一步对概念进行有针对性的复习。在练习环节中,我根据这些概念设计了一些相应的练习。目的是以练习促复习,在练习中更好的体会这些概念的具体含义,加深学生对概念的理解和掌握,学生在练习的过程中不仅仅掌握了知识整理的方法,还深刻地理解了知识的来龙去脉,对每个知识点的概念理解也更加清晰了,起到了复习回顾旧知识的作用。
不足之处:
1、个别学生在展评中不会去评价,只是从设计的美观上去思考,而没有从体现知识之间的联系上去进行说明,在这一点上教师还要加以引导。
2、出现个别学生由于第二单元的知识是在开学初学习的,有些知识点已经遗忘,导致出现连最小的偶数是几都不明白了,所以在学完每个单元后要不间断的进行知识的巩固和练习。
3、由于本节课的知识点过于多,练习的时间有些不足,导致基本的练习时间能够保障,可是需要拓展的知识没有更好的呈现出来。
再教设计:
1、抓住数学知识的本质,美观的整理形式只是一些外在的,并不是重点,注意引导学生从数学的本质去思考问题,排除数学本质以外的东西,去引发思考,从而构成良好的数学思维品质。
2、还要继续深入挖掘数学的思想、灵魂和方法,用以指导课堂教学,让学生掌握以后学习知识的钥匙,学会开启知识的大门。 ……此处隐藏8997个字……研究倍数和因数时,所说的数一般指不是0的自然数。
二、探索找一个数的倍数的方法
1、谈话:在刚才的谈话中,我们知道了12是3的倍数,18也是3的倍数
提问:3的倍数只有这两个吗?
你还能再写出几个3的倍数?
你是怎样想的?
你能按照从小到大的顺序有条理地说出3的倍数吗?
你能把3的倍数全都说完吗?
可以怎样表示?
2、议一议:你有没有发现找3的倍数的小窍门?(在找3的倍数时,可以按从小到大的顺序,依次用1、2、3……与3相乘,每次乘得的积都是3的倍数)
3、试一试:
(1)2的倍数有
(2)5的倍数有
4、想一想:观察上面几个例子,你发现一个数的倍数有什么特点?
5、练一练:想想做做2
三、探索求一个数的因数的方法
1、提出问题:你能找出36的所有因数吗?
2、四人小组合作完成
3、交流整理找一个数的因数的方法。
4、试一试(既要一组一组地找,又要按次序排列)
15的因数
16的因数
5、比一比:根据上面几个例子,你发现一个数的因数有什么特点?和同桌说一说
6、练一练:想想做做
四、课堂总结。
1、这节课,你有什么收获?
五、巩固提高
1、判断
(1)12是倍数,3是因数
(2)6既是2的倍数,又是3的倍数。
(3)25以内4的倍数有:4,8,12,16,20,24……
(4)6的最小倍数是12,12的最小因数是6。
2、看谁反应快
游戏准备:学生按学号编成连续的自然数。(课前)
游戏规则:凡是学号符合以下要求的,请站起来,看谁反应快?
(1)谁的学号是5的倍数
(2)谁的学号是24的因数
(3)谁的学号是30的因数
(4)谁的学号是1的倍数
反思:
在教学过程中出现了一个问题:是在提问:“根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?”时,发现学生根本不能回答,本来以为学生在三年级的时候应该对这部分的内容有所了解,能顺利回答,但是在课后与三年级的教师交流后发现没有这方面的内容安排。由此,我想:新课程实施了五年,我其实还是门外汉,还不能很好地适应新课程的要求,新课程的教材编排具有连续性,而老版本经常是一个知识点安排在一起,注重深度。看来教师不光要关心自己年级的教材内容,还得知道整个教材编排体系,知道各个年级知识点之间的联系。这样才能更好地完成教学任务,使学生得到应有的发展而不是降低要求的发展或者是被强行提高要求的发展。
因数和倍数教学反思15问题提出:
《因数和倍数》是一节数学概念课。数学概念是抽象与具体、各别与一般的辨证统一。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除,在此基础上再引出因数和倍数的概念。人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式,通过这个乘法算式直接给出因数和倍数的概念。新教材这样编排有利于教材结构与学生的认知结构产生同化,有利于学生主动构建新知。基于新教材带来的优势,我选择了《因数和倍数》一课。
案例概述:
《因数和倍数》第一稿
“兴趣是最好的老师”。在初步设计课时,我从学生喜闻乐见的趣味成语导入,并通过成语展开教学:
一、成语引入
课件出示:()面()方()光()色举()反()
二、探究因数和倍数的意义
(一)四面八方
1.探究8的因数
(1)板书:4×2=8这是一个乘法算式,在数学上这几个数就具备了一种关系。这时4就是8的因数(过去叫约数),8是4的倍数。(指名说,板书)
因数和倍数就是今天我们要研究的内容。
(2)2呢?相邻两个同学互相说一说。
(3)8的因数只有2和4吗?
(4)学生找8的因数还有1和8。(小组说1和8之间的关系)
(5)你能在练习纸上写出8的因数吗?。指名上台写(评价写的方法)
(6)画集合图表示8的.因数。
2.探究8的倍数
(1)我们找出8的因数了,那8的倍数有哪些数呢?你能说一个吗?
(2)在练习本上写出8的倍数。指名上台写。(写得完吗?怎么办?)
(3)那找8的倍数你有什么小窍门吗?
(二)五光十色
1.根据刚才大家研究8的经验,再来研究10,找出10的因数和倍数。你行吗?(学生自己写,指名板演)
2.你是怎样找出10的因数(倍数)?(课件出示,板书)
(三)举一反三
1.研究了8和10,其它数还行吗?
出示:你能从中选两个数,说一说谁是谁的因数?谁是谁的倍数吗?
3.5.18.20.36
2.刚才老师在听的时候,发现有好几个数都是36的因数,你发现了吗?在这里36的因数都有谁呢?
3.你能把36的因数全都找出来吗?(学生在练习纸上独立写出)
4.汇报。(评价方法)
5.学习到这儿,你有什么发现吗?(课件出示)
一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身。
6.我们说的数是什么样的数?
(课件出示)为了方便,在研究因数和倍数时,我们所说的数指的是整数(一般不包括0)。
三、巩固深化
1.向自己挑战:用今天学的知识介绍一下你自己。(指名说,组内介绍)
2.“找朋友”游戏。
3.介绍“完美数”。
教后反思:
上完课之后,我感到有很多不足之处,听课领导和老师也给我提出了中肯的意见和建议,存在问题主要有:
1.导入环节的这几个趣味成语,学生很容易猜出,对于激发学生的兴趣效果不是很明显。
2.由于在教学设计中没有考虑到因数和倍数之间相互依存的关系,所以学生理解得不是很深刻,这也导致了出现“2是因数,8是倍数”这样的情况。
3.在研究因数的方法上,学生体会得不很深刻,掌握得不很扎实。整节课学生的思维能力没有得到有效锻炼和提高,尤其使学生能有序地找出一个数的因数这一环节设计上,选择的数偏大(36),因数个数比较多,对学生来说有一些难度,导致了这一环节层次不清晰,学生也不能够有效地掌握找一个数因数的方法。



