正数和负数教案

时间:2026-02-12 02:21:09
正数和负数教案

正数和负数教案

作为一位杰出的老师,编写教案是必不可少的,教案有助于学生理解并掌握系统的知识。写教案需要注意哪些格式呢?以下是小编为大家收集的正数和负数教案,希望能够帮助到大家。

正数和负数教案1

一、教材分析

1、教学目标、重点、难点。

教学目标:

(1)通过实例,感受引入负数的必要性。

(2)了解正数、负数的概念。

(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量。

重点:理解相反意义的量,理解负数的意义。

难点:正确区分两种相反意义的量,并会用正负数表示。

2、例、习题的意图

通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性。通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念。

例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解。让学生准确的认识和区分正数与负数。

在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示。让学生进一步掌握如何用正、负数表示相反意义的数量。并理解相反意义与数量的含义。进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。

补充例3是例2的延续,在不明确哪一种意义的量用正数表示的情况下,让学生表示相反意义的量。通过例3的学习,训练学生发现生活中的具有相反意义的数量,理解、体会正、负意义的相对性,并恰当的用正、负数表示。培养学生的发散思维。

补充例4则是对例3正、负数表示相反意义的量的加强,通过训练,让学生说出正、负数所表示的实际意义,进一步培养学生正、负数的应用能力,逐步提升正、负数相对性和相反性的理解。

习题的设置是针对例题掌握情况的检查。教科书p5练习(2)、(3)、(4)是针对例2而设置的。补充练习1检查学生对相反意义与数量的理解。补充练习2是对例3的掌握情况的检查。

3、认知难点与突破方法:

对于相反意义及数量含义的理解,以及区分两种不同意义的量是本课的难点。在教学中注意思维的层次,首先要让学生明确数量指的是具体事物的多少。再分析是否是同一类事物,在是同类事物的基础上确定是否是相反关系。强化学生分析的层次性。在操作上,通过大量实际生活材料的分析和例2的学习让学生对相反意义及数量含义建立一定的感性认识,教师及时的给予适当的归纳,让学生建立初步的理性认识,最后通过练习1的判断对错进一步强化巩固对概念的理解。

用正、负数表示具有相反意义的过程中体现的正与负的相对性是另一个难点,通过例3的教学,鼓励学生发散思维,多角度认识具有相反意义的量,进而让学生认识正、负的相对性,通过例4的教学强化进一步强化对正、负的相对性的理解。

二、新课引入

通过回顾小学学过的数的类型,归纳出我们已经学了整数和分数,然后举一些生活中具有相反意义的量,说明为了表示相反意义的量,我们需要引入负数。强调数学的严密性。

教师举例:今天我们已经是七年级的学生了,我是你们的数学老师,下面我自我介绍一下,我的名字是***,身高1.71米,体重75.5千克,今年32岁,我们班有50名学生,其中男生23人,占全班总人数的46%,女生26人占总人数的53%。

问题1:老师在刚才的介绍中出现了几个数?分别是什么?试将这些数按以前学过的分类方法分类。学生思考、交流后教师总结:整数和分数两类。

问题2:生活中,仅有整数和分数就够用了吗?

引例:学生观察前面的几幅画中用到了什么数,让学生感受引入负数的必要性。讨论这些带有符号的数在实际中表示什么意义?

在学生交流的基础上教师归纳总结:以前学的数已经不够用了,在实际生活中我们需要引进一些新的数,只有这样才能更好的表示生活实际中数量关系。

三、例题讲解

教师引导学生通过观察上例中出现的这些数与以前学过的.数的区别,进而归纳出正负数的概念。

补充例1:(1)下各数哪些是正数,哪些是负数?

-1,2.5,0,-3.14,,120,-1.732

正数前面的+号通常省略。了解正负数形式上的区别(符号不同),形成中的联系(在以前学习的非0整数和分数前加上符号)

问题3:在整数前加上-号后这个数还是整数吗?在分数前加上-号后这个数还是分数吗?使学生对正整数、正分数、负整数、负分数有初步的了解。

(2)指出(1)中的分数、整数。(为有理数的学习做铺垫)

问题4:为什么要引出负数?通常在日常生活中我们用正数和负数分别表示怎样的量?学生回答问题。(用正负数表示相反意义的数量)

补充例2:用正、负数表式下列各量。

(1)若把上升5m记作+5m,那么下降5m记作。

(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈表示为

(3)向南走5000米记作-5000米,那么向北走8000米记作。

学会用正、负数表示具有相反意义的量,相反意义的量包含两个要素:一是意义相反。如向东的反向是向西,上升与下降,收入与支出。二是他们都是数量。

练习思考书P5观察,在此基础上让学生指出生活中具有相反意义的例子。(检查学生对相反意义的数量的理解程度。

补充例3:用适当的数值表示下列实际问题的数量。

(1)某地白天的温度是30℃,午夜的温度是零下10℃。

(2)某出租车在东西走向的大街上向东行驶3km,又向西行驶了5km.

(3)一商店在一小时内收入200元,又支出150元。

(4)甲公司本月的销售额增长13%,乙公司本月的销售额下降了2.9%

本例题是一发散性问题,没有规定哪种意义的量用正数表示,所以先要指明哪种意义的量用正数表示,其相反意义的量用负数表示。在解题中鼓励学生的不同思维。比如:若收入200元,记作:-200元,则支出150元记作+150元。反之,若收入200元,记作:+200元,则支出150元记作-150元。进一步加深对正、负数相反性及相对性的理解。同时要明确,通常情况下,零上、增长、收入用正数表示,零下、减少、支出用负数表示。

补充例4:解释下列各语句中表示各数量的数值的实际意义。

(1)七月份的物价比六月份增长了25%,八月份比七月份增长了-2.3%。

(2)经过绿化,我国沙漠化土地每年 ……此处隐藏16139个字……观察下面的温度计,它们分别显示了海口和哈尔滨冬季某一天的最低温度.

(2)提问:你能读出这两个城市这一天的最低气温吗?

(从温度计上可以看出,海口的最低气温是零上12℃,哈尔滨的最低气温是零下25℃.)

(3)补充说明:℃读作摄氏度.

(4)进一步理解零上温度和零下温度的含义:零上12℃比0℃高12℃,零下25℃比0℃低25℃.

(零上温度就是比0℃高,零下温度就是比0℃低.)

(5)总结:“零上温度和零下温度是一对具有相反意义的量”。

2、出示实例:“海平面以上和海平面以下”.

(1)从图中你可以了解到哪些信息?

(2)学生互相交流:

世界第一高峰珠穆朗玛峰大约比海平面高8844.43米.

地表的最低点在北太平洋西部的马里亚纳海沟,据目前测到的深度,比海平面低11034米.

(3)归纳:海平面以上高度和海平面以下深度也是一对具有相反意义的量.

3、举例生活中具有相反意义的量。

(收入支出)(运进运出)(上升下降)(向左向右)

4、尝试练习

用相反意义的量填空

1.小明骑车向东行200米,后来()行200米,正好回到原来的出发地点。

2.小王先向正北走80米,接着向正西走20米,然后向正南走80米,最后向()走()米,正好回到原来的`出发点。

三、认识正、负数

1、师:为了方便简洁地对具有相反意义的量进行区分,我们常用正数和负数表示具有相反意义的量。

例:课本P9图

如人们规定在零上温度前添上“+”号,而在零下温度前添上“-”号。

这天海口的最低气温是零上12℃,就记作+12℃;哈尔滨的最低气温是零下25℃,就记作-25℃。这样表示很方便。

正数前面的“+”号可以省略不写,如:+2,+10,可以写作2,10。

2、0既不是正数也不是负数,0是一个分界点。

四、巩固练习

1、练习册P4/2

2、填空

(1)零上21℃记作(),零下14℃记作()。

+18℃表示(),-7℃表示()。

(2)如果将高出地面的高度用正数表示,那么,金茂大厦高出地面340.1米,记作()米;静安寺下沉式广场低于地面8米,记作()米。

(3)如果将温度上升用正数表示,那么,温度上升6℃,记作(),那么温度上升-6℃,表示()。

(4)小明向东走30米,记作+30米,那么相西走30米,就记作();如果他向正南走10米,记作+10米,那么向正南走-10米,表示()。

四、实践阶段

1、你能说说存折中红线框出的数各表示什么吗?(课本P10 b)

2、用正负数表示相对位置。(课本P10 c)

五、总结

六、作业布置:

练习册P8

正数和负数教案15

教学目标:

1。通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

2。进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力。

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的量。

教与学互动设计:

(一)知识回顾和理解

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。

[问题1]:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明。

参考例子:用正数、负数和零表示零上温度、零下温度和零度。

思考“0”在实际问题中有什么意义?

归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义。

如:水位不升不降时的水位变化,记作:0 m。

[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

(二)深化理解,解决问题

[问题3]:(课本P3例题)

【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

【例2】(2)某年,下列国家的商品进出口总额比上年的'变化情况是:

美国减少6。4%,德国增长1。3%,法国减少2。4%,英国减少3。5%,意大利增长0。2%,中国增长7。5%。

写出这些国家这一年商品进出口总额的增长率。

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义。写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量。类似的还有水位上升、收入上涨等等。我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们。

巩固练习

1。通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值。

2。让学生再举出一些常见的具有相反意义的量。

3。1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

中国减少866,印度增长72,韩国减少130,新西兰增长434,泰国减少3247,孟加拉减少88。

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

阅读与思考

(课本P6)用正数和负数表示加工允许误差。

问题:

1。直径为30。032 mm和直径为29。97 mm的零件是否合格?

2。你知道还有哪些事件可以用正负数表示允许误差吗?请举例。

(三)应用迁移,巩固提高

1。甲冷库的温度是—12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是。

2。一种零件的内径尺寸在图纸上是9±0。05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

3。摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

星期一二三四

增减—5 +7 —3 +4

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

类比例题,要求学生注意书写格式,体会正负数的应用。

(四)课时小结(师生共同完成)

《正数和负数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式